Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 278
1.
Poult Sci ; 103(5): 103572, 2024 May.
Article En | MEDLINE | ID: mdl-38428355

An experiment was conducted to determine the effect of feeding reduced crude protein (CP) diets to Ross × Ross 708 male broilers while providing adequate essential amino acid (AA) concentrations on growth performance, nitrogen (N) and ammonia output, and carcass characteristics from d 1 to 33 post hatch. Birds received 1 of 6 dietary treatments (10 replicate pens per treatment) varying in CP content. Diet 1 (control) was formulated with DL-Met, L-Lys, and L-Thr (23.2, 20.7, and 19.1% CP) in the starter (1-14 d of age), grower (15-25 d of age), and finisher (26-33 d of age) periods, respectively. Dietary L-Val, Gly (only in starter period), L-Ile, L-Arg, and L-Trp were sequentially supplemented in the order of limitation in Diets 2 through 6. Dietary CP was reduced gradually across the dietary treatments resulting in a CP reduction in Diets 1 to 6 by 3.4, 3.4, and 2.3% points in the starter, grower, and finisher periods, respectively. At d 14, 25, and 33 posthatch, feed conversion decreased (P < 0.05) with L-Val addition (Diet 2) and increased (P < 0.01) with L-Val to L-Trp addition (Diet 6) to the control. Dietary treatments did not alter weights and yields of carcass, breast, drum, or thighs. Dietary CP reduction with added L-Val (Diet 2), L-Val to L-Arg (Diet 5), or L-Val to L-Trp (Diet 6) increased abdominal fat (P < 0.01) compared with control. Nitrogen excretion (g/bird; P = 0.003) and equilibrium ammonia concentration (mg/kg; P = 0.041) at day 33 reduced by 16% and 48% respectively in birds fed reduced-CP diets with L-Val to L-Trp (Diet 6) compared with control-fed birds. This study indicated that sequential addition of supplemental AA in the order of limitation from DL-Met to L-Arg allowed reduction of dietary CP beyond 2%-point without depressing growth performance and meat yield of broilers from day 1 to 33 while reducing nitrogen excretion and ammonia emissions.


Amino Acids, Essential , Ammonia , Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Nitrogen , Animals , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Male , Nitrogen/metabolism , Ammonia/metabolism , Diet/veterinary , Amino Acids, Essential/administration & dosage , Amino Acids, Essential/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Diet, Protein-Restricted/veterinary , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Random Allocation , Meat/analysis , Dietary Supplements/analysis
2.
Poult Sci ; 103(2): 103268, 2024 Feb.
Article En | MEDLINE | ID: mdl-38035473

It is well known that male and female broilers differ in their growth performance and that many physiological factors contribute to this difference. The aim of this experiment is to investigate if there are differences between male and female broilers in cecal microbiota and nutrient transporter gene expression and if these differences play a role in the growth performance of broilers. The possible effect of protein level and its interaction with sex on microbiota and expression of the nutrient transporters were also investigated. Samples were collected from male and female birds fed either standard crude protein (SCP) or reduced crude protein diets (RCP) at the age of d 35. The experiment was designed as a 2 × 2 factorial arrangement of treatments consisting of 448 Cobb 500 broilers assigned to 32-floor pens with 4 treatments, 8 replicates, and 14 birds per pen for performance measurements. The factors were sex (male or female) and dietary crude protein (CP) level (standard or reduced). Body weight gain (BWG), feed intake and feed conversion ratio were recorded for each pen. Sex had a significant effect on BWG and FCR (P < 0.001) where males had a significantly higher BWG and better FCR compared to females. There was a significant interaction between sex and protein level on feed intake (FI) (P < 0.05), where male birds had a higher FI compared to female birds only when the birds were fed SCP but not RCP diets. There was a significant interaction between CP level and sex on the expression of CAT2 (P = 0.02) and PEPT2 (P = 0.026) where the genes were significantly upregulated in females but only when the RCP diet was fed. The RCP diet upregulated the expression of BoAT (P = 0.03) as a main effect. Female birds had significantly higher expression of the PepT-2 gene compared to the males. The alpha diversity of the cecal microbiota showed differences among the treatments. The Shannon diversity index was statistically higher (P = 0.036) for males fed the SCP diet and the Chao1 index for evenness was statistically higher (P = 0.027) in females fed the SCP diet. There was also a difference in the relative abundance of the 15 most common genera found in the cecal content of the broilers in this experiment and lastly, the differential composition of microbiota between the different treatments was also significantly different. This study suggests that chickens are able to compensate for a reduction in AA substrates when fed a low CP diet through the upregulation of certain AA transporters, females may adapt to low CP diets better by such upregulation compared to males, and lastly, sex has an effect on the cecal microbial population and these differences contribute towards the performance differences between male and female broilers.


Chickens , Microbiota , Animals , Male , Female , Chickens/physiology , Diet/veterinary , Dietary Proteins , Weight Gain , Nutrients , Diet, Protein-Restricted/veterinary , Gene Expression , Animal Feed/analysis , Dietary Supplements/analysis , Animal Nutritional Physiological Phenomena
3.
Br Poult Sci ; 65(2): 144-153, 2024 Apr.
Article En | MEDLINE | ID: mdl-38053490

1. This study evaluated the effect of wheat dilution increasing in particle size in low crude protein diets on growth performance, digestive tract, nitrogen efficiency and litter quality in broiler chickens.2. Ross 308 male broiler chicks (n = 336) were allocated to one of four dietary treatments (each with 7 pens, 12 chicks per pen); Control (CON; commercial pellet diet with standard crude protein, CP: 22.50%), W578 (CON +20% wheat of geometric mean diameter (GMD) of 578 µm; CP: 20.25%), W1326 (CON +20% wheat of GMD 1326 µm; CP: 20.25%) and WW (CON +20% whole wheat, CP: 20.25%), from d 0 to 21 of age.3. Body weight gain was increased (P < 0.05) for birds fed CON compared to the low crude protein diets. However, WW increased (P < 0.05) body weight gain compared to W578 and W1326, while feed intake and feed conversion ratio on CON and WW were similar (P > 0.05). Birds fed W1326 showed the poorest (P < 0.05) FCR compared to CON, W578 and WW.4. Gizzard relative weight (g/kg body weight) was increased (P < 0.05) on WW compared to CON on d 14 and 21, whereas gastric isthmus diameter was significantly reduced on W1326 and WW compared with CON and W578.5. There were no differences (P > 0.05) in the depth of gizzard mucosa of lamina propria between CON and WW at d 14 and 21. Birds fed WW increased (P < 0.05) gizzard tensile strength compared to W578 and W1326, whereas no difference was observed between WW and CON on d 14.6. No significant differences were seen for ileum villus height and mucosal layer between CON and WW on d 21, however, feeding CON increased the extent of the mucosal layer compared to W578 and W1326.7. Nitrogen excretion (g/kg BWG) was significantly lower (P > 0.05) on W1326 and WW compared with CON and W578. Litter nitrogen, moisture, and footpad scores significantly decreased (P < 0.05) for birds fed WW compared with CON.8. Diluting dietary protein content from 22.50 to 20.25% resulted in lower body weight gain in broilers. However, dilution with whole wheat resulted in comparable FCR, reduced nitrogen excretion, litter moisture and footpad dermatitis compared with a standard protein diet.


Chickens , Diet, Protein-Restricted , Animals , Male , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Body Weight , Diet/veterinary , Diet, Protein-Restricted/veterinary , Nitrogen/metabolism , Triticum/metabolism
4.
J Dairy Sci ; 107(4): 2087-2098, 2024 Apr.
Article En | MEDLINE | ID: mdl-37923213

Low crude protein (CP) diets might be fed to dairy cows without affecting productivity if the balance of absorbed AA were improved, which would decrease the environmental effect of dairy farms. The aim of this study was to investigate the effects of supplementing ruminally protected Lys (RPL) and Met (RPM) at 2 levels of dietary CP on nutrient intake, milk production, milk composition, milk N efficiency (MNE), and plasma concentrations of AA in lactating Holstein cows and to evaluate these effects against the predictions of the new NASEM (2021) model. Fifteen multiparous cows were used in a replicated 3 × 3 Latin square design with 21-d periods. The 3 treatments were (1) a high-protein (HP) basal diet containing 16.4% CP (metabolizable protein [MP] balance of -130 g/d; 95% of target values), (2) a medium-protein diet containing 15% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; MPLM; MP balance of -314 g/d; 87% of target values), and (3) a low-protein diet containing 13.6% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; LPLM; MP balance of -479 g/d; 80% of target values). Dry matter intake was less for cows fed MPLM and LPLM diets compared with those fed the HP diet. Compared with the HP diet, the intake of CP, neutral detergent fiber, acid detergent fiber, and organic matter, but not starch, was lower for cows fed MPLM and LPLM diets. Milk production and composition were not affected by MPLM or LPLM diets relative to the HP diet. Milk urea N concentrations were reduced for the MPLM and LPLM diets compared with the HP diet, indicating that providing a low-protein diet supplemented with rumen-protected AA led to greater N efficiency. There was no significant effect of treatment on plasma AA concentrations except for proline, which significantly increased for the MPLM treatment compared with the other 2 treatments. Overall, the results supported the concept that milk performance might be maintained when feeding lactating dairy cows with low CP diets if the absorbed AA balance is maintained through RPL and RPM feeding. Further investigations are needed to evaluate responses over a longer time period with consideration of all AA rather than on the more aggregated MP and the ratio between Lys and Met.


Lysine , Methionine , Female , Cattle , Animals , Diet, Protein-Restricted/veterinary , Lactation/physiology , Rumen/metabolism , Nitrogen/metabolism , Detergents/metabolism , Milk Proteins/metabolism , Diet/veterinary , Dietary Supplements , Milk/chemistry , Racemethionine/metabolism , Racemethionine/pharmacology , Dietary Proteins/metabolism
5.
Poult Sci ; 103(2): 103312, 2024 Feb.
Article En | MEDLINE | ID: mdl-38100944

Endotoxins released from poultry feces have been associated with impaired human health. Because endotoxins are released from gram-negative intestinal bacteria, it was hypothesized that dietary strategies may influence endotoxin excretion via modulation of gut microbiota. We therefore tested dietary strategies that could potentially reduce cloacal endotoxin levels in broiler chickens. One-day-old male Ross 308 (N = 1,344) broilers were housed in 48 pens (N = 8 pens/treatment, 28 chickens per pen) and fed 1 of 6 diets for 35 days (d) in a 3-phase feeding program: a basic diet (CON) that served as the reference diet, or basic diet supplemented with butyrate (BUT), inulin (INU), medium-chain fatty acids (MCFA) or Original XPC™LS (XPC), or a high-fiber-low-protein (HF-LP) diet. A significant (P < 0.05) increase in cloacal endotoxin concentration at d 35 was observed in BUT as compared to CON. Analysis of cloacal microbiota showed a trend (P < 0.07) for a higher gram-negative/gram-positive ratio and for a higher relative abundance of gram-negative bacteria at d 35 (P ≤ 0.08) in BUT and HF-LP as compared to CON. A significant (P < 0.05) increase in average daily gain (ADG) and improved feed conversion ratio (P < 0.05) were observed in MCFA during the grower phase (d 14-28), and a significant (P < 0.05) increase in average daily feed intake (ADFI) was observed in MCFA during d 0 to 28. Broilers fed HF-LP had a significantly (P < 0.05) higher FCR and lower ADG throughout the rearing period. No treatment effects were found on footpad dermatitis, but BUT had worst hock burn scores at d 35 (P < 0.01) and MCFA had worst cleanliness scores at d 21 but not at d 35 (treatment*age P < 0.05), while INU had better cleanliness as compared to CON at d 35 (P < 0.05). In conclusion, especially BUT and HF-LP were able to modulate resident microbiota and BUT also increased cloacal endotoxin levels, which was opposite to our hypothesis. The present study indicates that cloacal endotoxin release can be affected by the diet but further study is needed to find dietary treatments that can reduce cloacal endotoxin release.


Chickens , Microbiota , Humans , Animals , Male , Chickens/microbiology , Endotoxins , Diet/veterinary , Dietary Supplements/analysis , Diet, Protein-Restricted/veterinary , Fatty Acids , Inulin , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
6.
Arch Anim Nutr ; 77(5): 385-402, 2023 Oct.
Article En | MEDLINE | ID: mdl-38009466

Despite the increasing importance of goat production in response to high demand for their products and their relative robustness to environmental stressors, and in contrast to other ruminant species, little data is available on how tannin extract feeding affects their feed intake, nutrient digestion and nitrogen (N) metabolism. Therefore, a trial in Oman investigated the respective variables by using a commercial tannin feed additive. In a 4 (treatments) x 3 (periods) x 2 (animals) Youden square, two weaned Batinah bucks each were fed a high or low protein diet of Rhodes grass hay and crushed barley grain, with or without the addition of a chestnut and quebracho tannin extract at 2 g/kg metabolic weight. Feed offered, feed refused and faeces and urine excreted were quantified to determine diet digestibility, total N excretion, N retention and rumen microbial protein synthesis (MPS). Due to their young age and low live weight, feed intake of goats was relatively low. Crude protein level and tannin addition had no statistically significant effect on dry matter (DM) and N intake, DM digestibility, N excretion in faeces and urine, as well as MPS. In consequence, no benefit of tannin feeding could be confirmed for the goats' N retention, irrespective of diet composition. These results indicate, on one hand, an effective neutralisation of the tested tannin extract along the gastrointestinal tract of goats, but on the other hand, that stimulation of MPS or N retention by tannins cannot be evidenced when diet components are present that simultaneously release energy and protein, as is the case with barley.


Diet , Tannins , Animals , Diet/veterinary , Diet, Protein-Restricted/veterinary , Goats/physiology , Digestion , Animal Feed/analysis , Plant Extracts , Nitrogen/metabolism , Rumen/metabolism
7.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37843846

This study aimed to investigate the effects of diets with and without antibiotics supplementation and diets with 18.5% and 13.0% crude protein (CP) on growth performance, carcass characteristics, disease incidence, fecal microbiota, immune response, and antioxidant capacity of growing pigs. One hundred and eighty pigs (59-day-old; 18.5 ±â€…2.5 kg) were distributed in a randomized complete block design in a 2 × 2 factorial arrangement, nine replicates, and five pigs per pen. The factors were CP (18.5% or 13.0%) and antibiotics (none or 100 mg/kg tiamulin + 506 mg/kg oxytetracycline). Medicated diets were fed from days 59 to 73. After that, all pigs were fed their respective CP diets from 73 to 87 days. Data were analyzed using the Mixed procedure in SAS version 9.4. From days 59 to 73, pigs fed antibiotics diets had higher (P < 0.05) average daily feed intake (ADFI), average daily weight gain (ADG), gain to feed ratio (G:F), compared to the diets without antibiotics. From days 73 to 87 (postmedicated period), any previous supplementation of antibiotics did not affect pig growth performance. Overall (days 59 to 87), pigs-fed antibiotics diets had higher (P < 0.05) G:F compared to pigs-fed diets without antibiotics. In all periods evaluated, pigs fed 18.5% CP diets had higher (P < 0.05) ADG and G:F compared to pigs fed 13.0% CP. Pigs fed the 13.0% CP diets had lower (P < 0.05) fecal score and diarrhea incidence than those fed 18.5% CP. Pigs fed 18.5% CP diets had improved (P < 0.05) loin area compared to pigs-fed diets with 13.0% CP. At 66 days of age, pigs-fed antibiotics diets had lower (P < 0.05) alpha diversity estimated with Shannon and Simpson compared to the pig-fed diets without antibiotics. At family level, pigs fed 18.5% CP diets had higher (P < 0.05) relative abundance of Streptococcaceae, and lower (P < 0.05) relative abundance of Clostridiaceae at days 66 and 87 compared with pigs fed 13.0% CP. Pigs-fed antibiotics diets had lower (P < 0.05) immunoglobulin G and protein carbonyl concentrations at day 66 compared to the pigs-fed diets without antibiotics. The reduction of dietary CP from 18.5% to 13.0% reduced the growth performance and loin muscle area of growing pigs, although it was effective to reduce diarrhea incidence. Antibiotics improved growth performance, lowered diarrhea incidence, improved components of the humoral immune response, and reduced microbiota diversity. However, in the postmedicated period, we found no residual effect on the general health of the animals, and considering the overall period, only G:F was improved by the use of antibiotics.


Dietary antibiotics have been used in pig farming practices to avoid health problems and improve animal growth performance. However, their use in production animals is considered a global health challenge, due to its association with selection of resistance in zoonotic bacteria. Another negative impact of pig farming that has gained attention is related to environmental pollution due to the excretion of nitrogenous compounds. Reducing dietary crude protein content has become a goal in the pig feed industry due to the limited availability and high cost of dietary protein sources, as well as the aim of enhancing gut health in pigs. Thus, the aim of this study was to investigate the effects of diets with and without antibiotics supplementation and diets with 18.5% and 13.0% crude protein for pigs. The reduction of dietary crude protein in this study reduced growth performance, although it was effective to reduce diarrhea incidence. Antibiotics improved growth performance, positively affected the overall health of animals, and reduced microbiota diversity. However, during the postmedicated period, we found no residual effect on the general health of the animals, and considering the overall period, only gain to feed ratio was improved by the use of antibiotics.


Anti-Bacterial Agents , Diet , Swine , Animals , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Diet, Protein-Restricted/veterinary , Feces , Weight Gain , Diarrhea/prevention & control , Diarrhea/veterinary , Immunity , Animal Feed/analysis , Dietary Supplements
8.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37527457

The objective of this experiment was to investigate the effects of dietary crude protein (CP) content and crystalline amino acids (CAA) supplementation patterns in low CP (LCP) diets on intestinal bacteria and their metabolites in weaned pigs raised under clean (CSC) or unclean sanitary conditions (USC). One hundred forty-four piglets (6.35 ±â€…0.63 kg) were assigned to one of six treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions in a randomized complete block design to give eight replicates with three pigs per pen over a 21-d period. Diets consisted of a high CP (HCP; 21%) and two LCP (18%) diets supplemented with 9 CAA (Lys, Met, Thr, Trp, Val, Ile, Leu, His, and Phe) or only six CAA (Lys, Met, Thr, Trp, Val, and Ile) to meet the requirements. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens from the beginning of the study and was not washed throughout the experiment. Jejunum and colon digesta were sampled on day 21. Both jejunum and colon digesta were analyzed for ammonia nitrogen, short-chain fatty acids, and biogenic amines but only colon digesta was analyzed for microbiome composition (16s rRNA sequencing on MiSeq). Data were analyzed using R software for 16S rRNA and the MIXED procedure of SAS for microbial metabolites. Sanitation, CP content, and CAA supplementation patterns did not affect the diversity of colonic bacterial composition in weaned pigs. Pigs raised under USC had greater (P < 0.05) jejunal ammonia nitrogen concentration than those raised under CSC. Pigs fed LCP diets had reduced (P < 0.05) jejunal ammonia nitrogen concentration compared to those fed the HCP diet. Interactions between sanitation and dietary CP content were observed (P < 0.05) for: (1) jejunal acetate and (2) colonic spermidine and spermine, whereby (1) acetate concentrations decreased from NCP to LCP in pigs raised under the CSC but those concentrations increased under the USC, and (2) spermidine and spermine concentrations increased in LCP diets compared to HCP diet under USC, unlike CSC which did not show any difference between HCP and LCP. In conclusion, reducing dietary CP lowered ammonia nitrogen content regardless of sanitation and increased microbial metabolites in weaned pigs raised under USC. However, LCP diets with different CAA supplementation patterns did not affect bacterial diversity in weaned pigs, regardless of the hygienic conditions where the animals were housed.


Lowering dietary crude protein concentration by 3% to 4% units has been used as one of the strategies to promote growth and improve the gut health of weaned pigs. Undigested and endogenous protein could be available for microbial fermentation, and protein fermentation is considered detrimental to the gut health of the host animal. The unclean sanitary condition model mimics commercial raising conditions and stimulates a low-grade inflammatory and immune response. Ammonia nitrogen is one of the harmful metabolites derived by protein fermentation and pigs fed low-protein diets had decreased ammonia nitrogen than those fed high-protein diets. Also, pigs raised under unclean sanitation had greater ammonia nitrogen than those raised under clean sanitation. However, sanitation, protein content, and crystalline amino acids supplementation patterns did not affect the diversity of colonic bacterial composition in weaned pigs. The results obtained from the present study showed that a low protein diet could be used to improve gut health in weaned pigs.


Ammonia , Diet, Protein-Restricted , Swine , Animals , Female , Diet, Protein-Restricted/veterinary , RNA, Ribosomal, 16S , Spermidine , Spermine , Diet/veterinary , Dietary Supplements , Dietary Proteins/metabolism , Amino Acids/metabolism , Bacteria/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
9.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37555615

This study was conducted to determine the effect of animal protein inclusion rate and grain-free or grain-inclusive diets on macronutrient digestibility, fecal characteristics, metabolites, and microbiota in mixed-breed hounds and Beagles. Four experimental extruded kibble diets were made with varying amounts of animal protein and carbohydrates: 1) high animal protein, grain-inclusive (HA-GI), 2) low animal protein, grain-free (LA-GF), 3) low animal protein, grain-inclusive (LA-GI), and 4) high animal protein, grain-free (HA-GF). Thirty-two Beagles and 33 mixed-breed hounds were assigned to 1 of the 4 treatment groups in a completely randomized design that lasted 180 d. All diets were similar in chemical composition and well-digested by the animals. In general, for fecal metabolites, mixed-breed hounds had a greater concentration of total short-chain fatty acid (SCFA) and ammonia and lower indole concentration than Beagles (P < 0.05). In mixed-breed hounds, LA-GF had a greater (P < 0.05) total SCFA concentration than HA-GI and LA-GI; however, this was not observed in Beagles. There were greater concentrations of ammonia, phenol, and indole in HA-GI than in LA-GF (P < 0.05). Breed-affected fecal primary bile acid (BA) concentration, as mixed-breed hounds had a greater concentration of cholic acid (CA) than Beagles (P < 0.05). Mixed-breed hounds fed LA-GF resulted in greater CA concentrations than HA-GI and LA-GI (P < 0.05). Dogs who consumed LA-GF had lower fecal secondary BA content than the other groups (P < 0.05). The distribution of the fecal microbiota community differed in LA-GF compared with the other groups, with lower α-diversity. However, dogs fed LA-GF had the largest difference in composition with greater Selenomonadaceae, Veillonellaceae, Lactobacillaceae, Streptococcus, Ligilactobacillus, Megamonas, Collinsella aerofaciens, and Bifidobacterium sp. than the other groups. A significant breed effect was noted on nutrient digestibility, fecal metabolites, and microbiota. A treatment effect was observed in LA-GF as it resulted in greater fecal SCFA, lower protein fermentative end products, greater fecal primary BAs, lower fecal secondary BA concentrations, and shifts in fecal microbiota.


A recent topic of debate in pet food is whether grain or pulse ingredients and varying amounts of animal-based protein compared to plant proteins are better for pets' health. Thus, the need to examine ingredients used in pet food is important. This study aimed to evaluate macronutrient digestibility, fecal characteristics, fecal metabolites, and fecal microbiota in both mixed-breed hounds and Beagles when fed extruded diets containing different inclusion rates of animal protein and plant-based ingredients. Four experimental diets were studied 1) high animal protein, grain-inclusive (HA-GI), 2) low animal protein, grain-free (LA-GF), 3) low animal protein, grain-inclusive (LA-GI), and 4) high animal protein, grain-free (HA-GF). We found that all four diets were well-digested by the animals and all dogs remained healthy throughout the study. In addition, LA-GF produced a decrease in alpha diversity, yet was greater in the abundance of Megamonas, which are known to produce short-chain fatty acids. The other diets did not differ significantly. Apparent total tract nutrient digestibility, fecal characteristics, metabolites, and microbiota were affected by breed and dietary treatments. While some have postulated that pulse-rich diets could perhaps be a cause of nutrition-associated dilated cardiomyopathy in canines due to a potentially negative effect on digestibility, our results showed all diets were highly digestible.


Digestion , Microbiota , Animals , Dogs , Ammonia/analysis , Animal Feed/analysis , Diet/veterinary , Diet, Protein-Restricted/veterinary , Fatty Acids, Volatile/analysis , Feces/chemistry , Plant Breeding
10.
Anim Sci J ; 94(1): e13861, 2023.
Article En | MEDLINE | ID: mdl-37551564

We investigated the effects of a low-protein diet and feed restriction on the mRNA expression of cationic amino acid transporters (CATs) in the longissimus dorsi (LD), rhomboideus (RH), and biceps femoris (BF) muscles of pigs. Eighteen piglets were divided into three groups: a control (CP21%), low-protein diet (LP, CP16%), and feed-restricted diet (FR, CP21%, 76% feed intake of control pigs) groups. The expression levels of CAT-1 in the LD and BF muscles of LP pigs were higher than that of control pigs, whereas that of FR pigs showed no difference. The CAT-2A expression levels in the RH muscle of FR pigs were higher than that of control pigs. The free lysine concentrations in all muscles of LP and FR pigs were lower than that of control pigs. To examine the factors that affect CATs mRNA expression, we evaluated the effects of lysine, arginine, insulin-like growth factor-I, and dexamethasone on the expression of CATs in C2C12 myotubes. CAT-1 expression levels increased in lysine and/or arginine deprivation. We show that CAT-1 and CAT-2A expression levels in skeletal muscles differ in response to dietary treatments and CAT-1 expression in skeletal muscles appears to increase in response to low free lysine concentrations.


Amino Acid Transport Systems, Basic , Lysine , Swine/genetics , Animals , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Lysine/metabolism , Diet, Protein-Restricted/veterinary , Diet/veterinary , Arginine/metabolism , Arginine/pharmacology , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animal Feed/analysis
11.
Poult Sci ; 102(10): 102979, 2023 Oct.
Article En | MEDLINE | ID: mdl-37562128

Dietary fibres with increased particle size may develop foregut more efficiently in meat poultry fed diets moderately low in crude protein. The study investigated the performance of broilers fed low-density crude protein diets with the inclusion of oat hulls increasing in particle size. Ross 308 male broiler chicks (n = 336) were divided into 48 pens, 12 pens per treatment (7 chicks per pen). Pens were allocated to 4 dietary treatments in mash form; positive control (PC), a standard crude protein diet, negative control (NC), around 5% lower in protein with 5% celite as an inert material, OH400: 5% lower protein diet with 5% oat hulls of geometric mean diameter (GMD) 400 µm, OH850: 5% lower protein diet with 5% oat hulls of GMD 850µm. Birds were fed ad libitum from d 1 to 35 in 3 phases; starter: d 0 to 10, grower: d 10 to 24 and finisher: d 24 to 35. Growth performance was calculated at the end of the trial. Two birds per pen were sampled on d 24 and 35 to collect data on proventriculus and gizzard weights and pooled ileal digesta. Apparent ileal digestibility of amino acids on d 24, and metabolizable energy on d 24 and 35 were recorded for each pen. Litter was sampled from each pen on d 34 to analyze litter N and moisture content. Footpad dermatitis scores of all birds per pen were recorded on d 35. Overall, no difference (P > 0.05) in body weight gain and feed intake was found between the treatments. However, NC and OH400 showed poorer FCR than PC, whereas FCR on PC and OH850 was similar (P > 0.05). Gizzard absolute weight and relative to body weight, and gizzard to proventriculus ratio were higher (P < 0.05) on OH850 compared to PC and NC on d 24 and 35. Gizzard digesta particle size was reduced (P < 0.05) on OH850 compared to all other diets on d 24 and 35. Amino acids digestibility coefficients for aspartic acid and valine increased (P < 0.05) in birds fed OH850 compared to PC, whereas coefficients for several other amino acids were improved compared to NC and OH400. The apparent ileal digestibility of metabolizable energy was similar (P > 0.05) between PC and OH850. Litter moisture and nitrogen, and footpad dermatitis scores were reduced (P < 0.05) on OH850 compared to PC. In conclusion, the inclusion of coarse oat hulls of GMD 850 µm in low-density crude protein diets can be beneficial for the broilers in developing the foregut, utilizing the nutrients efficiently and reducing litter nitrogen and moisture, and footpad scores.


Dermatitis , Dietary Supplements , Animals , Male , Amines , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Avena , Body Weight , Chickens , Dermatitis/veterinary , Diet/veterinary , Diet, Protein-Restricted/veterinary , Digestion , Nitrogen , Particle Size
12.
J Dairy Sci ; 106(12): 8694-8709, 2023 Dec.
Article En | MEDLINE | ID: mdl-37641248

Inclusion of urea in dairy cattle diets is often limited by negative effects of high levels of feed urea on dry matter intake (DMI) and efficiency of rumen N utilization. We hypothesized that supplying urea postruminally would mitigate these limitations and allow greater inclusion of urea in dairy cattle diets. Four rumen-fistulated Holstein-Friesian dairy cows (7 ± 2.1 lactations, 110 ± 30.8 d in milk; mean ± standard deviation) were randomly assigned to a 4 × 4 Latin square design to examine DMI, milk production and composition, digestibility, rumen fermentation, N balance, and plasma constituents in response to 4 levels of urea continuously infused into the abomasum (0, 163, 325, and 488 g/d). Urea doses were targeted to linearly increase the crude protein (CP) content of total DMI (diet plus infusion) by 0%, 2%, 4%, and 6% and equated to 0%, 0.7%, 1.4%, and 2.1% of expected DMI, respectively. Each 28-d infusion period consisted of a 7-d dose step-up period, 14 d of adaptation, and a 7-d measurement period. The diet was fed ad libitum as a total mixed ration [10.9% CP, 42.5% corn silage, 3.5% grass hay, 3.5% wheat straw, and 50.5% concentrate (dry matter basis)] and was formulated to meet 100%, 82%, and 53% of net energy, metabolizable protein, and rumen-degradable protein requirements, respectively. Linear, quadratic, and cubic effects of urea dose were assessed using polynomial regression assuming the fixed effect of treatment and random effects of period and cow. Dry matter intake and energy-corrected milk yield responded quadratically to urea dose, and milk urea content increased linearly with increasing urea dose. Apparent total-tract digestibility of CP increased linearly with increasing urea dose and ruminal NH3-N concentration responded quadratically to urea dose. Mean total VFA concentration was not affected by urea dose. The proportion of N intake excreted in feces decreased linearly and that excreted in urine increased linearly in response to increasing urea dose. The proportion of N intake excreted in milk increased linearly with increasing urea dose. Urinary urea excretion increased linearly with increasing urea dose. Microbial N flow responded cubically to urea dose, but the efficiency of microbial protein synthesis was not affected. Plasma urea concentration increased linearly with increasing urea dose. Regression analysis estimated that when supplemented on top of a low-CP diet, 179 g/d of postruminal urea would maximize DMI at 23.4 kg/d, corresponding to a dietary urea inclusion level of 0.8% of DMI, which is in line with the current recommendations for urea inclusion in dairy cattle diets. Overall, these results indicate that postruminal delivery of urea does not mitigate DMI depression as urea dose increases.


Lactation , Urea , Female , Cattle , Animals , Urea/metabolism , Milk/chemistry , Diet/veterinary , Silage/analysis , Diet, Protein-Restricted/veterinary , Zea mays/metabolism , Rumen/metabolism , Digestion , Animal Feed/analysis
13.
Anim Sci J ; 94(1): e13853, 2023.
Article En | MEDLINE | ID: mdl-37431230

We fed 330-545 day-old laying hens (later laying period) a low-protein diet supplemented with essential amino acids (LPS) and composted their manure. We then investigated the laying performance of the hens, the nitrogen balance and emission of nitrous oxide (N2 O), methane (CH4 ), and ammonia (NH3 ) from the composting, and several characteristics of the finished compost. There were no significant differences in the egg-laying rate, egg mass, egg weight, proximate compositions in egg yolk and egg white, or feed intake between the laying hens fed a Control diet (Cont) and those fed the LPS diet. However, the LPS-fed hens had lower excreta levels and nitrogen excretion. In addition, the environmental gas emissions per layer from composting of the manure from the LPS-fed laying hens were decreased by 9.7% for N2 O, 40.9% for CH4 , and 24.8% for NH3 compared to the Cont-fed laying hens. The concentrations of total nitrogen in the finished compost were similar between the LPS-fed and Cont-fed laying hens. In a vegetable-growth test, the weights of komatsuna plants grown with compost from LPS-fed and Cont-fed hens were also not significantly different. Feeding an LPS diet to 330-545 day-old laying hens was suggested to reduce environmental gas emissions from manure composting without affecting the egg production performance.


Composting , Diet, Protein-Restricted , Animals , Female , Diet, Protein-Restricted/veterinary , Manure , Amino Acids, Essential , Chickens , Lipopolysaccharides , Nitrogen
14.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37279969

Traditionally, swine diets have been formulated to meet nutrient requirements at the lowest cost with little regard toward minimizing environmental impacts. The overall objective of this study was to evaluate the relative differences among four grower-finisher feeding programs, using precision diet formulation practices, on growth performance, carcass composition, nitrogen utilization efficiency, and environmental impacts. In experiment 1, four 4-phase growing-finishing feeding programs consisting of diets containing corn and soybean meal (CSBM), low protein CSBM supplemented with crystalline amino acids (LP), CSBM with 30% distillers dried grains with solubles (DDGS), and DDGS supplemented with crystalline Ile, Val, and Trp (DDGS + IVT) were fed to 288 mixed sex pigs (initial body weight [BW] = 36.9 ±â€…4.2 kg) for 12 wk to determine effects on growth performance and carcass characteristics. Pigs fed with CSBM had greater (P < 0.05) final BW than those fed with LP and DDGS, and greater gain efficiency than pigs fed with LP. Pigs fed with DDGS + IVT tended to have greater (P = 0.06) backfat depth than pigs fed with DDGS, and less (P < 0.05) loin muscle area than pigs fed with CSBM. In experiment 2, nitrogen (N) and phosphorus (P) balance of barrows (n = 32; initial BW = 59.9 ±â€…5.1 kg) fed with each of the phase-2 diets from experiment 1 was determined in a 12-d metabolism study (7 d adaptation and 5 d collection). Pigs fed with CSBM had a greater (P < 0.05) amount of N retained than pigs fed with other diets, but also had a greater (P < 0.05) amount of urinary N excretion and blood urea N than pigs fed with LP and DDGS + IVT diets. Pigs fed with LP tended (P = 0.07) to have the greatest N utilization efficiency but the least (P < 0.05) P retained as a percentage of P intake among dietary treatments. Diet composition and data collected from experiments 1 and 2 were used to calculate life cycle assessment environmental impacts using Opteinics software (BASF, Lampertheim, Germany). The CSBM feeding program had the least impact on climate change, marine and freshwater eutrophication, and fossil resource use. The LP feeding program had the least impact on acidification, terrestrial eutrophication, and water use, while the DDGS feeding programs had the least impact on land use. These results indicate that feeding CSBM diets optimized growth performance and carcass composition while simultaneously reducing impacts on climate change, marine and freshwater eutrophication, and fossil resource use compared with the other feeding programs evaluated.


Developing and evaluating feeding programs that optimize growth performance and carcass composition, while minimizing cost, nutrient excretion in manure, and environmental impact is essential for achieving sustainable pork production systems. Four growing-finishing feeding programs consisting of typical corn-soybean meal (CSBM) diets, low protein CSBM diets containing supplemental crystalline amino acids (LP), CSBM diets containing 30% corn dried distillers grains with solubles (DDGS), and DDGS diets containing supplemental crystalline Ile, Val, and Trp were evaluated to compare their effects on growth performance, carcass composition, nitrogen and phosphorus utilization efficiency, and several environmental impact measures. Pigs fed CSBM diets had greater final body weight than those fed the LP and DDGS diets, and greater gain efficiency than pigs fed the LP diets, but there were no differences in the percentage of carcass lean among feeding programs. However, pigs fed the LP diets had the greatest nitrogen utilization efficiency and the least impact on acidification, terrestrial eutrophication, and water use among these feeding programs. The CSBM feeding program had the least impact on climate change, marine and freshwater eutrophication, and fossil resource use, while the DDGS feeding programs had the least impact on land use.


Pork Meat , Red Meat , Swine , Animals , Adipose Tissue/physiology , Body Composition , Animal Feed/analysis , Diet/veterinary , Diet, Protein-Restricted/veterinary , Zea mays/chemistry , Glycine max , Animal Nutritional Physiological Phenomena , Environment , Systems Analysis , Edible Grain
15.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37314978

The aim of this study was to evaluate the beneficial effects and potential mechanisms of genistein (GEN) on production performance impairments and lipid metabolism disorders in laying hens fed a high-energy and low-protein (HELP) diet. A total of 120 Hy-line Brown laying hens were fed with the standard diet and HELP diet supplemented with 0, 50, 100, and 200 mg/kg GEN for 80 d. The results showed that the declines in laying rate (P < 0.01), average egg weight (P < 0.01), and egg yield (P < 0.01), and the increase of the ratio of feed to egg (P < 0.01) induced by HELP diet were markedly improved by 100 and 200 mg/kg of GEN treatment in laying hens (P < 0.05). Moreover, the hepatic steatosis and increases of lipid contents (P < 0.01) in serum and liver caused by HELP diet were significantly alleviated by treatment with 100 and 200 mg/kg of GEN in laying hens (P < 0.05). The liver index and abdominal fat index of laying hens in the HELP group were higher than subjects in the control group (P < 0.01), which were evidently attenuated by dietary 50 to 200 mg/kg of GEN supplementation (P < 0.05). Dietary 100 and 200 mg/kg of GEN supplementation significantly reduced the upregulations of genes related to fatty acid transport and synthesis (P < 0.01) but enhanced the downregulations of genes associated with fatty acid oxidation (P < 0.01) caused by HELP in the liver of laying hens (P < 0.05). Importantly, 100 and 200 mg/kg of GEN supplementation markedly increased G protein-coupled estrogen receptor (GPER) mRNA and protein expression levels and activated the AMP-activated protein kinase (AMPK) signaling pathway in the liver of laying hens fed a HELP diet (P < 0.05). These data indicated that the protective effects of GEN against the decline of production performance and lipid metabolism disorders caused by HELP diet in laying hens may be related to the activation of the GPER-AMPK signaling pathways. These data not only provide compelling evidence for the protective effect of GEN against fatty liver hemorrhagic syndrome in laying hens but also provide the theoretical basis for GEN as an additive to alleviate metabolic disorders in poultry.


Fatty liver hemorrhagic syndrome (FLHS) is a nutritional and metabolic disease that seriously threatens the health and performance of laying hens, which is characterized by hepatic steatosis and lipid metabolism disorders. As an isoflavone phytoestrogen, genistein (GEN) exerts many beneficial functions, including alleviating lipid metabolism disorders and anti-inflammatory properties. However, further research is needed on the protective effect and potential mechanism of GEN on the FLHS in laying hens. Here, we found that GEN treatment improved liver injury and decline of production performance in laying hens with FLHS. Moreover, GEN treatment alleviated hepatic steatosis and lipid metabolism disorders through reducing the expression levels of mRNA related to fatty acid transport and synthesis and enhancing the mRNA expression levels of factors associated with fatty acid oxidation in FLHS layers, which may be achieved by activation of the G protein-coupled estrogen receptor­adenosine 5'-monophosphate (AMP)-activated protein kinase signaling pathways. These data not only provide compelling evidence for the protective effects and mechanisms of GEN against FLHS in laying hens but also provide the theoretical basis for GEN to alleviate other metabolic disorders in poultry.


Fatty Liver , Hemorrhage , Lipid Metabolism Disorders , Animals , Female , Genistein/pharmacology , Genistein/metabolism , AMP-Activated Protein Kinases/metabolism , Chickens/metabolism , Lipid Metabolism , Fatty Liver/prevention & control , Fatty Liver/veterinary , Liver/metabolism , Diet/veterinary , Lipid Metabolism Disorders/complications , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/veterinary , Hemorrhage/genetics , Hemorrhage/metabolism , Hemorrhage/veterinary , Diet, Protein-Restricted/veterinary , Signal Transduction , Estrogens/metabolism , Fatty Acids/metabolism , Animal Feed/analysis
16.
Animal ; 17(7): 100869, 2023 Jul.
Article En | MEDLINE | ID: mdl-37390624

Reducing the dietary CP concentration in the formulation of low-protein diets without adverse effects on animal growth performance and meat quality remains challenging. In this study, we investigated the effects of nicotinamide (NAM) on the nitrogen excretion, growth performance, and meat quality of growing-finishing pigs fed low-protein diets. To measure the nitrogen balance, we conducted two trials: in nitrogen balance trial 1, four crossbred (Duroc × Landrace × Large White) barrows (40 ± 0.5 kg BW) were used in a 4 × 4 Latin square design with four diets and periods. The diets consisted of a basal diet + 30 mg/kg NAM (a control dose), basal diet + 90 mg/kg NAM, basal diet + 210 mg/kg NAM, and basal diet + 360 mg/kg NAM. In nitrogen balance trial 2, another four barrows (40 ± 0.5 kg BW) were used in a 4 × 4 Latin square design. The diets consisted of a basal diet + including 30 mg/kg NAM (control), basal diet + 360 mg/kg NAM, low-protein diet + 30 mg/kg NAM, and low-protein diet + 360 mg/kg NAM. To measure growth performance, two trials were conducted. In growth performance trial 1, 40 barrows (37.0 ± 1.0 kg) were randomly allocated to one of four dietary treatments (n = 10 per group), whereas in growth performance trial 2, 300 barrows (41.4 ± 2.0 kg) were randomly allocated to one of four dietary treatments, with each dietary treatment conducted in five repetitions with 15 pigs each. The four diets in the two growth performance trials were similar to those in nitrogen balance trial 2. Supplementing the diet with 210 or 360 mg/kg NAM reduced urinary nitrogen excretion and total nitrogen excretion and increased nitrogen retention comparted with the control diet (P < 0.05). Compared with the control diet, the low-protein diet with 360 mg/kg NAM reduced faecal, urinary, and total nitrogen excretion (P < 0.05) without affecting nitrogen retention and average daily gain (P > 0.05). Pigs fed the low-protein diet with 360 mg/kg NAM showed a decreased intramuscular fat content in the longissimus thoracis muscle when compared with pigs fed the control diet (P > 0.05). Our results suggest NAM as a suitable dietary additive to reduce dietary CP concentration, maximise nitrogen retention and growth performance, and decrease fat deposition in pigs.


Niacinamide , Nitrogen , Swine , Animals , Niacinamide/pharmacology , Diet/veterinary , Diet, Protein-Restricted/veterinary , Meat/analysis , Animal Feed/analysis , Dietary Supplements , Animal Nutritional Physiological Phenomena
17.
Poult Sci ; 102(8): 102789, 2023 Aug.
Article En | MEDLINE | ID: mdl-37354614

A total of 392 Cobb 500 off-sex male broiler chicks were used in a 21-day experiment to study the effect of protease, xylanase, and xylo-oligosaccharides (XOS) on improving growth performance, nutrient utilization (ileal digestibility and total tract retention), gene expression of nutrient transporters, cecal short-chain fatty acids (SCFAs), and microbiota profile of broilers challenged with Eimeria spp. Chicks at 0-day old were allocated to 8 treatments in a 4 × 2 factorial arrangement: 1) corn-soybean meal diet with no enzyme (Con); 2) Con plus 0.2 g/kg protease alone (PRO); 3) Con plus 0.2 g/kg protease combined with 0.1 g/kg xylanase (PRO + XYL); or 4) Con plus 0.5 g/kg xylo-oligosaccharides (XOS); with or without Eimeria challenge. The 4 diets were formulated to be marginally low in crude protein (183 g/kg). Challenged groups were inoculated with a solution containing E. maxima, E. acervulina, and E. tenella oocysts on d 15. Eimeria depressed (P < 0.01) growth performance and nutrient utilization. Supplemental protease improved (P < 0.05) body weight gain and feed intake in the prechallenge phase (d 0-15) but had no effect during the infection period (d 15-21). There was no interaction between infection and feed supplementation for nutrient utilization. The supplementations of either PRO or XOS alone increased (P < 0.01) total tract retention of Ca and tended (P < 0.1) to improve total tract retention of N, P, AME, and AMEn. Eimeria decreased (P < 0.05) expressions of GLUT2, GLUT5, PepT1, ATP2B1, CaSR, Calbidin D28K, NPT2, and ZnT1 but increased (P < 0.01) expression of GLUT1. XOS supplementation increased (P < 0.05) ATP2B1 expression. Protease decreased (P < 0.05) isobutyrate concentration in unchallenged treatments but not in challenged treatments. Eimeria decreased (P < 0.01) cecal saccharolytic SCFAs acetate and propionate but increased (P < 0.01) branched-chain fatty acid isovalerate. The supplementation of PRO + XYL or XOS increased (P < 0.05) cecal butyrate or decreased cecal isobutyrate concentrations, respectively. PRO + XYL and XOS decreased cecal protein levels in unchallenged birds but not challenged ones. Eimeria challenge significantly (P < 0.05) decreased the microbial richness (Observed features) and diversity (Shannon index and phylogenetic diversity) and changed the microbial composition by reducing the abundance of certain bacteria, such as Ruminococcus torques, and increasing the abundance of others, such as Anaerostipes. In contrast, none of the additives had any significant effect on the cecal microbial composition. In conclusion, PRO or XOS supplementation individually improved nutrient utilization. All the additives decreased the cecal content of branched-chain fatty acids, consistent with decreased cecal N concentration, although the effects were more pronounced in unchallenged birds. In addition, none of the feed additives impacted the Eimeria-induced microbial perturbation.


Coccidiosis , Eimeria , Microbiota , Animals , Male , Dietary Supplements/analysis , Chickens , Diet, Protein-Restricted/veterinary , Peptide Hydrolases/metabolism , Isobutyrates/metabolism , Phylogeny , Diet/veterinary , Endopeptidases/metabolism , Fatty Acids, Volatile/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Nutrients , Animal Feed/analysis , Coccidiosis/veterinary , Coccidiosis/metabolism
18.
Poult Sci ; 102(7): 102773, 2023 Jul.
Article En | MEDLINE | ID: mdl-37236037

We investigated the effects of supplementing arginine (Arg) and branched-chain amino acids (BCAA) in broilers fed reduced-protein diets and challenged with Eimeria spp. All birds were fed the same starter diet meeting Cobb 500 nutrient specifications from d 1 to 9. Four grower diets: positive control (PC) with 20.0% crude protein (CP); reduced-protein negative control (NC) with 17.5% CP; or NC supplemented with Arg or BCAA at 50% above recommendations (ARG or BCAA) were fed to the birds from d 9 to 28. Birds were allocated in a 2 × 4 factorial arrangement (4 diets, each with or without challenge), with 8 replicates per treatment. On d 14, the challenge groups were orally gavaged with mixed Eimeria spp. Intestinal permeability was higher (P < 0.05) in NC than PC, whereas the permeability of ARG and BCAA groups did not differ significantly from PC. On d 28, a significant interaction (P < 0.01) was observed in CD8+: CD4+ ratios in cecal tonsils (CT), Eimeria challenge increased the ratios in all groups except for the ARG group. On d 21, a significant interaction was found for CD4+CD25+ percentages in CT (P < 0.01) that Eimeria challenge increased the percentages only in PC and NC groups. On d 21 and 28, significant interactions (P < 0.01) were found for macrophage nitric oxide (NO) production. In nonchallenged birds, NO was higher in the ARG group than other groups, but in challenged birds, NO was higher in both ARG and BCAA groups. On d 21, a significant interaction was found for bile anticoccidial IgA concentrations (P < 0.05) that Eimeria challenge increased IgA only in NC and ARG groups. The results suggest that a reduced-protein diet exacerbates the impact of the Eimeria challenge on intestinal integrity, but this could be mitigated by Arg and BCAA supplementations. Arginine and BCAA supplementations in reduced-protein diets could be beneficial for broilers against Eimeria infection by enhancing the immune responses. The beneficial effects of Arg supplementation tended to be more pronounced compared to BCAA supplementation.


Coccidiosis , Eimeria , Poultry Diseases , Animals , Eimeria/physiology , Chickens , Arginine/pharmacology , Coccidiosis/prevention & control , Coccidiosis/veterinary , Diet/veterinary , Dietary Supplements , Diet, Protein-Restricted/veterinary , Amino Acids, Branched-Chain/pharmacology , Immunity , Immunoglobulin A , Animal Feed/analysis , Poultry Diseases/prevention & control
19.
Trop Anim Health Prod ; 55(3): 190, 2023 May 04.
Article En | MEDLINE | ID: mdl-37140716

The objective of the present study was to evaluate the effects of increasing doses of protease on broilers from 1 to 42 days of age. A total of 1290 Ross AP broilers were used, distributed among five treatments: positive control diet, negative control diet (NC), NC + 50 ppm of protease, NC + 100 ppm of protease, and NC + 200 ppm of protease. Each treatment contained six replicates of 43 animals each. The inclusion of proteases in the diet had effects (P < 0.05) on body weight, feed intake, weight gain, and feed conversion in the 12 to 21 day period; body weight, weight gain, and feed intake in the 29 to 42 day period; nutrient digestibility (energy metabolizability coefficient and crude protein at 28 days); and intestinal parameters (crypt and muscle width of jejunum and ileum at 28 days and villus length, crypt length, and jejunum thickness muscle layer at 42 days). These results indicate that the inclusion of protease in broiler feed can improve production parameters when the amount of crude protein in the diet is reduced.


Diet, Protein-Restricted , Peptide Hydrolases , Animals , Peptide Hydrolases/metabolism , Diet, Protein-Restricted/veterinary , Chickens/physiology , Diet/veterinary , Nutrients/physiology , Meat , Body Weight , Weight Gain , Animal Feed/analysis , Dietary Supplements , Animal Nutritional Physiological Phenomena
20.
Trop Anim Health Prod ; 55(2): 82, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36795279

A study was conducted to assess the effect of feeding different crude protein (CP) levels with isocaloric metabolizable energy (ME) diets on growth performance, carcass traits, and myostatin (MSTN) gene expression of Aseel chicken during 0 to 16 weeks of age. A total of two hundred and ten day-old Aseel chickens were randomly allotted to seven dietary treatment groups. Each group had thirty chicks distributed into three replicates of ten chicks in each. Experimental diets were formulated to have varying levels of CP, viz. 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, and 21.5%, with isocaloric energy of 2800 kcal ME/kg diets of mash feed fed to birds in a completely randomized design. Different CP levels had a significant effect (P < 0.05) on the body weight gain (BWG) of Aseel chicken. At the end of 16 weeks of age, the group fed 21% CP gained 223.53 g more than the lowest CP (18.5%)-fed group. The different CP levels did not significantly (P > 0.05) influenced the feed intake of all treatment groups, but numerically highest feed intake was observed in the lowest CP (18.5%)-fed group. However, significant differences in feed efficiency (FE) appeared from the 13th week only with the 21.0% CP-fed group showing the best FE until the 16th week (3.86 to 4.06). The maximum dressing % (70.61) was observed by the 21% CP-fed group. The CP 21% diet down-regulated the MSTN gene expression in breast muscle tissue to 0.07 folds when compared to the diet of CP 20%. The best economical coordinates for maximum performance for Aseel chicken appeared to be CP of 21% and ME of 2800 kcal/kg to achieve the best FE of 3.86 at the earliest age of 13 weeks. In conclusion, 21% CP in an isocaloric diet of 2800 kcal ME/kg, in Aseel chickens, would be optimum to improve the growth performance at maximum in terms of BWG and FE up to 16 weeks of age.


Chickens , Myostatin , Animals , Myostatin/genetics , Diet/veterinary , Dietary Proteins , Diet, Protein-Restricted/veterinary , Weight Gain , Gene Expression , Animal Feed/analysis , Energy Metabolism , Animal Nutritional Physiological Phenomena
...